Effects of amyloid-beta on cholinergic and acetylcholinesterase-positive cells in cultured basal forebrain neurons of embryonic rat brain.
نویسندگان
چکیده
The neurotoxic effects of amyloid-beta(1-42) and amyloid-beta(25-35) (A beta) on cholinergic and acetylcholinesterase-positive neurons were investigated in primary cultures derived from embryonic 18-day-old rat basal forebrain. After various time intervals, the cultures were treated with 1, 5, 10 or 20 microM A beta for different time periods. The cholinergic neurons and their axon terminals were revealed by vesicular acetylcholine transporter immunohistochemistry and the cholinoceptive cells by acetylcholinesterase histochemical staining. To assess the toxic effects of these A beta peptides on the cholinergic neurons, image analysis was applied for quantitative determination of the numbers of axon varicosities/terminals and cells. The results demonstrate that, following treatment with 1 or 5 microM A beta for 5, 10, 30, 60 or 120 min, no changes in vesicular acetylcholine transporter immunohistochemical staining were observed. However, after treatment for 30 min with 10 or 20 microM A beta, the number of stained axon varicosities was reduced, and treatment for 2 h they had disappeared. In contrast, vesicular acetylcholine transporter-positivity could be seen in some of the neuronal perikarya even after 3 days after treatment. The acetylcholinesterase staining was homogeneously distributed in the control neurons. After A beta treatment, the histochemical reaction end-product was detected in some of the neuronal perikarya or in the dendritic processes near to the soma. It is concluded that the neurotoxic effects of A beta appear more rapidly in the cholinergic axon terminals than in the cholinergic and acetylcholinesterase-positive neuronal perikarya.
منابع مشابه
Cholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA
Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...
متن کاملCellular mechanisms for amyloid beta-protein activation of rat cholinergic basal forebrain neurons.
The deposition of amyloid beta-protein (Abeta) in the brain and the loss of cholinergic neurons in the basal forebrain are two pathological hallmarks of Alzheimer's disease (AD). Although the mechanism of Abeta neurotoxicity is unknown, these cholinergic neurons display a selective vulnerability when exposed to this peptide. In this study, application of Abeta(25-35) or Abeta(1-40) to acutely d...
متن کاملNeurotrophin effects on survival and expression of cholinergic properties in cultured rat septal neurons under normal and stress conditions.
These studies tested the hypothesis that survival-promoting effects of neurotrophins on basal forebrain cholinergic neurons are enhanced under stress. Septal neurons from embryonic day 14-15 rats exposed for 10-14 d to neurotrophin [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotrophin-4 (NT-4), each at 100 ng/ml] showed a two- to threefold ...
متن کاملAmyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain.
The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Ab...
متن کاملBeta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices.
The 4 kDa beta-amyloid (A beta) protein, a major component of cerebral and cerebrovascular plaques in Alzheimer's disease (AD), is derived from the proteolytic cleavage of a larger, membrane-bound precursor, the A beta precursor protein (APP). Until recently, it was assumed that an aberrant AD-specific proteolysis generated A beta peptides, which subsequently could initiate and/or contribute to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 998 1 شماره
صفحات -
تاریخ انتشار 2004